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ABSTRACT

The fault detection problem is investigated for discrete-time linear uncertain systems. 
Instead of designing a fault detection system from the viewpoint of observer design for 
robust residual generation, an adaptive threshold approach is proposed to attain robustness 
against disturbance and norm-bounded model uncertainty. The main goal of the research 
is to develop a threshold design method that could establish an appropriate trade-off 
between false alarms and missed fault detection in the presence of model uncertainty. 
For this purpose, the H∞ optimization technique is adopted in the linear matrix inequality 
framework to compute the unknown parameters of an adaptive threshold. It is shown that 
the proposed fault detection system based on an adaptive threshold depends only on the 
system parameters and the control input of the monitored system. It is independent of 
robust residual generator designs in traditional observer-based fault detection systems. The 
effectiveness of the proposed approach is verified on two well-known benchmark systems: 
a direct-current motor and three tank systems. Several types of faults are successfully 
detected in both applications.
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INTRODUCTION

The reliability and safety of engineering 
systems remain the prime focus as 
technology advances. In this regard, several 
sophisticated systems have been developed 
with the aid of advanced and robust control 
theories that ensure the desired performance 



3108 Pertanika J. Sci. & Technol. 31 (6): 3107 - 3124 (2023)

Masood Ahmad and Rosmiwati Mohd-Mokhtar

of the system. The performance is governed by the system’s internal components and by 
the functionality of sensors and actuators (Ahmad & Mohd-Mokhtar, 2021; Rahnavard 
et al., 2019).

Faults in these critical parts significantly reduce the system’s overall performance 
and, in some cases, put the system in danger if not handled immediately. Fault detection 
(FD) plays a vital role in such situations by promptly identifying the presence of a fault 
and assisting in preventing both financial and fatal losses (Na & Ahmad, 2019; Salimi et 
al., 2019).

In the existing literature, FD techniques are typically classified as data-driven and 
model-based (Chen & Patton, 2012; Ding, 2014). The data-driven approach is adopted 
when system dynamics cannot be quantitatively modeled due to insufficient knowledge of 
the system’s internal behavior. In contrast to data-driven techniques, model-based FD is 
chosen based on knowledge of the system dynamics, and mathematical model equations 
are developed. These equations are used to reconstruct the system output and verify that the 
anticipated output is consistent with the measured output from the sensors. The output error 
is treated as a residual. It should ideally be zero if there is no fault and non-zero otherwise.

Model-based FD techniques are further categorized as parameter estimation techniques, 
observer-based techniques, and parity relation techniques. In this study, the focus is on the 
observer-based technique. This technique consists of residual generation and evaluation, 
including threshold design. The primary task of the first stage, i.e., residual generation, 
is to generate a residual that indicates the possible occurrence of the fault. In the second 
stage, the residual is evaluated using signal and system norms to distinguish the fault from 
disturbance and noise and then compared with the threshold (Ahmad & Mohd Mokhtar, 
2022; Gertler, 2017). Finally, a fault is declared upon simple decision logic, in which if 
the evaluated residual exceeds the threshold, the fault is declared and vice versa.

Most practical systems encounter unknown inputs, i.e., deterministic disturbance and/or 
random noise and model uncertainties. The unknown inputs cause deviation in the residual 
from zero in fault-free cases, which ultimately reduces the FD system performance. Thus, 
an indispensable need is to design a robust FD system where these unknown inputs are 
treated very carefully. In this context, two approaches have been used to deal with these 
unknown inputs in a model-based framework. In the first method, the residual generator 
is designed to either generate a residual completely decoupled from unknown inputs or 
use optimization approaches to make the residual robust against unknown inputs. Robust 
residual generation using optimization approaches has gained much attention, and very 
good results have been reported for linear systems subjected to unknown disturbance 
and random noise in the existing literature (Blanke et al., 2015; Gertler, 2017; Isermann, 
2006). It is worth mentioning that generated residuals satisfy the sensitivity and robustness 
criterion in terms of performance indexes such as H∞/H∞, H-/H∞, and H2/H∞. In the second 
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approach, rather than designing a robust residual generator, a robust threshold is designed 
to handle the unknown inputs in the residual evaluation stage. 

More specifically, in the former case, an observer is designed to produce an unbiased 
estimation of the system’s outputs, irrespective of the influence of model uncertainties and 
unknown disturbances that make output error zero, a desired phenomenon in FD. Robust 
residual generation is only possible when the observer design meets the robustness and 
sensitivity requirements of certain performance indexes. In the latter case, robustness 
to model uncertainties and unknown disturbances is ensured by a robust threshold in 
the residual evaluation stage rather than the residual generation stage (Amirkhani et al., 
2020; Raka & Combastel, 2013; Puig et al., 2013; Montes de Oca et al., 2012). A robust 
threshold determines the maximum tolerance limit of an unknown disturbance and model 
uncertainty of the residual in the fault-free case. This approach eliminates the need for a 
separate robust residual generator design. The separate design of robust residual generation 
refers to an independent design of an observer, which is not linked with the threshold design 
in the second stage. In this case, the observer and threshold are designed separately for 
successful FD (former case). In robust threshold design, the threshold is designed in such 
a way that it could minimize the effect of the unknown inputs. Residual generation and 
threshold design are integrated into a single stage. 

On the other side, the main challenges in the robust threshold design are false alarms 
and missed detection of the faults that must be addressed for successful FD. False alarms 
are generated due to unknown inputs, which forces the residual to cross the threshold even 
in fault-free cases. In this study, a threshold is designed for linear discrete-time systems 
subjected to norm-bounded model uncertainty and deterministic disturbances, which is 
the main contribution and becomes the paper’s objective that distinguishes it from the 
existing literature. In this paper, the residual is generated by a fault detection filter (FDF), 
and the H∞ optimization technique is used in the linear matrix inequality (LMI) framework 
to calculate the unknown parameters of the threshold. In the proposed threshold design, 
the maximum influence of unknown disturbance and model uncertainty is not considered, 
compared to the standard threshold, which reduces the missed detection of the fault because 
of the lower value of the detection threshold and increases the false alarms in the system. 
In the end, a DC motor and three-tank system illustrate the significance of the proposed 
scheme via simulations. The effectiveness of the proposed threshold in detecting the fault 
is assessed using a variety of sensor and actuator faults.

PROBLEM FORMULATION

A linear discrete-time dynamic system, driven by l2 norm bounded control input 
𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  
𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑  
𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  

(𝛥𝛥𝛥𝛥) 
𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

 , unknown input 
𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  
𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑  
𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  

(𝛥𝛥𝛥𝛥) 
𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

, and affected by 

𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  
𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑  
𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  

(𝛥𝛥𝛥𝛥) 
𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

 and model 
uncertainties 

𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  
𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑  
𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  

(𝛥𝛥𝛥𝛥) 
𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

 is represented by the following Equation 1:
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𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  
𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑  
𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  

(𝛥𝛥𝛥𝛥) 
𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  
𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑  
𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  

(𝛥𝛥𝛥𝛥) 
𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1)   (1)

where 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 

input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 

following Equation 1: 

𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 

𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸𝑑𝑑 ,𝐹𝐹𝑑𝑑 ,𝐸𝐸𝑓𝑓 , and 𝐹𝐹𝑓𝑓are known matrices with appropriate dimensions. ∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 are norm-

bounded model uncertainties, defined as Equation 2: 

�∆𝐴𝐴 ∆𝐵𝐵
∆𝐶𝐶 ∆𝐷𝐷� = �𝐻𝐻1∑𝐺𝐺1 𝐻𝐻1∑𝐺𝐺2

𝐻𝐻2∑𝐺𝐺1 𝐻𝐻2∑𝐺𝐺2
�                      (2) 

where 𝐻𝐻1,𝐻𝐻2,𝐺𝐺1and 𝐺𝐺2 are known matrices with compatible dimensions, and Σ is an unknown scalar 

constant but bounded with a condition that holds ∑𝑇𝑇∑ ≤ 𝛿𝛿 and 0 < 𝛿𝛿 ≤ 1. Furthermore, it is assumed 

that 
sup
𝑑𝑑 ≠ 0‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑 , where 𝛿𝛿𝑑𝑑  is the upper limit of energy of unknown disturbance. Note that 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 represent the maximum possible influence of disturbance and model uncertainty on the system 

dynamics. 

 

Observer-based residual generator, so-called FDF, is described by Equation 3: 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)� 

𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     

       (3) 

  denotes the state vector and 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 
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dynamics. 

 

Observer-based residual generator, so-called FDF, is described by Equation 3: 
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𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     

       (3) 
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vector. 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 

input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 

following Equation 1: 
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where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 
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input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 
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where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 
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input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 

following Equation 1: 

𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 
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unknown scalar constant but bounded with a condition that holds 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 
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A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 

input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 
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where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 

𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸𝑑𝑑 ,𝐹𝐹𝑑𝑑 ,𝐸𝐸𝑓𝑓 , and 𝐹𝐹𝑓𝑓are known matrices with appropriate dimensions. ∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 are norm-

bounded model uncertainties, defined as Equation 2: 

�∆𝐴𝐴 ∆𝐵𝐵
∆𝐶𝐶 ∆𝐷𝐷� = �𝐻𝐻1∑𝐺𝐺1 𝐻𝐻1∑𝐺𝐺2

𝐻𝐻2∑𝐺𝐺1 𝐻𝐻2∑𝐺𝐺2
�                      (2) 

where 𝐻𝐻1,𝐻𝐻2,𝐺𝐺1and 𝐺𝐺2 are known matrices with compatible dimensions, and Σ is an unknown scalar 

constant but bounded with a condition that holds ∑𝑇𝑇∑ ≤ 𝛿𝛿 and 0 < 𝛿𝛿 ≤ 1. Furthermore, it is assumed 

that 
sup
𝑑𝑑 ≠ 0‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑 , where 𝛿𝛿𝑑𝑑  is the upper limit of energy of unknown disturbance. Note that 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 represent the maximum possible influence of disturbance and model uncertainty on the system 

dynamics. 

 

Observer-based residual generator, so-called FDF, is described by Equation 3: 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)� 

𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     

       (3) 

, where 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 

input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 

following Equation 1: 

𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 

𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸𝑑𝑑 ,𝐹𝐹𝑑𝑑 ,𝐸𝐸𝑓𝑓 , and 𝐹𝐹𝑓𝑓are known matrices with appropriate dimensions. ∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 are norm-

bounded model uncertainties, defined as Equation 2: 

�∆𝐴𝐴 ∆𝐵𝐵
∆𝐶𝐶 ∆𝐷𝐷� = �𝐻𝐻1∑𝐺𝐺1 𝐻𝐻1∑𝐺𝐺2

𝐻𝐻2∑𝐺𝐺1 𝐻𝐻2∑𝐺𝐺2
�                      (2) 

where 𝐻𝐻1,𝐻𝐻2,𝐺𝐺1and 𝐺𝐺2 are known matrices with compatible dimensions, and Σ is an unknown scalar 

constant but bounded with a condition that holds ∑𝑇𝑇∑ ≤ 𝛿𝛿 and 0 < 𝛿𝛿 ≤ 1. Furthermore, it is assumed 

that 
sup
𝑑𝑑 ≠ 0‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑 , where 𝛿𝛿𝑑𝑑  is the upper limit of energy of unknown disturbance. Note that 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 represent the maximum possible influence of disturbance and model uncertainty on the system 

dynamics. 

 

Observer-based residual generator, so-called FDF, is described by Equation 3: 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)� 

𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     

       (3) 

 is the upper limit of energy 
of unknown disturbance. Note that 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 

input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 

following Equation 1: 

𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 

𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸𝑑𝑑 ,𝐹𝐹𝑑𝑑 ,𝐸𝐸𝑓𝑓 , and 𝐹𝐹𝑓𝑓are known matrices with appropriate dimensions. ∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 are norm-

bounded model uncertainties, defined as Equation 2: 

�∆𝐴𝐴 ∆𝐵𝐵
∆𝐶𝐶 ∆𝐷𝐷� = �𝐻𝐻1∑𝐺𝐺1 𝐻𝐻1∑𝐺𝐺2

𝐻𝐻2∑𝐺𝐺1 𝐻𝐻2∑𝐺𝐺2
�                      (2) 

where 𝐻𝐻1,𝐻𝐻2,𝐺𝐺1and 𝐺𝐺2 are known matrices with compatible dimensions, and Σ is an unknown scalar 

constant but bounded with a condition that holds ∑𝑇𝑇∑ ≤ 𝛿𝛿 and 0 < 𝛿𝛿 ≤ 1. Furthermore, it is assumed 

that 
sup
𝑑𝑑 ≠ 0‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑 , where 𝛿𝛿𝑑𝑑  is the upper limit of energy of unknown disturbance. Note that 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 represent the maximum possible influence of disturbance and model uncertainty on the system 

dynamics. 

 

Observer-based residual generator, so-called FDF, is described by Equation 3: 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)� 

𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     

       (3) 

 and 

A linear discrete-time dynamic system, driven by 𝑙𝑙2 norm bounded control input 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝 , unknown 

input 𝑑𝑑(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑑𝑑 , and affected by 𝑓𝑓(𝑘𝑘) ∈ 𝑅𝑅𝑘𝑘𝑓𝑓  and model uncertainties (𝛥𝛥𝛥𝛥), is represented by the 

following Equation 1: 

𝑥𝑥(𝑘𝑘 + 1) = (𝐴𝐴 + 𝛥𝛥𝐴𝐴)𝑥𝑥(𝑘𝑘) + (𝐵𝐵 + 𝛥𝛥𝐵𝐵)𝑢𝑢(𝑘𝑘) + 𝐸𝐸𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐸𝐸𝑓𝑓𝑓𝑓(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = (𝐶𝐶 + 𝛥𝛥𝐶𝐶)𝑥𝑥(𝑘𝑘) + (𝐷𝐷 + 𝛥𝛥𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)         (1) 

where 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  denotes the state vector and 𝑦𝑦(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚be the measurement vector. 

𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸𝑑𝑑 ,𝐹𝐹𝑑𝑑 ,𝐸𝐸𝑓𝑓 , and 𝐹𝐹𝑓𝑓are known matrices with appropriate dimensions. ∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 are norm-

bounded model uncertainties, defined as Equation 2: 

�∆𝐴𝐴 ∆𝐵𝐵
∆𝐶𝐶 ∆𝐷𝐷� = �𝐻𝐻1∑𝐺𝐺1 𝐻𝐻1∑𝐺𝐺2

𝐻𝐻2∑𝐺𝐺1 𝐻𝐻2∑𝐺𝐺2
�                      (2) 

where 𝐻𝐻1,𝐻𝐻2,𝐺𝐺1and 𝐺𝐺2 are known matrices with compatible dimensions, and Σ is an unknown scalar 

constant but bounded with a condition that holds ∑𝑇𝑇∑ ≤ 𝛿𝛿 and 0 < 𝛿𝛿 ≤ 1. Furthermore, it is assumed 

that 
sup
𝑑𝑑 ≠ 0‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑 , where 𝛿𝛿𝑑𝑑  is the upper limit of energy of unknown disturbance. Note that 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 represent the maximum possible influence of disturbance and model uncertainty on the system 

dynamics. 

 

Observer-based residual generator, so-called FDF, is described by Equation 3: 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)� 

𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     

       (3) 

 represent the maximum possible influence of 
disturbance and model uncertainty on the system dynamics.

Observer-based residual generator, so-called FDF, is described by Equation 3:

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘)− 𝑦𝑦�(𝑘𝑘)� 

𝑟𝑟(𝑘𝑘) =  𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)     (3) 

where 𝑦𝑦�(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘) + 𝐷𝐷𝑢𝑢(𝑘𝑘) 

      (3)

(4)

(5)

 is a state estimation vector, 

(4)

(5)

 is the estimated output vector, and 

(4)

(5)

 
is the residual signal. The new vector, i.e., state estimation error vector, 𝑒𝑒(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) − 𝑥𝑥�(𝑘𝑘) , 
illustrates the dynamics of FDF (Equation 3) and is described by Equations 4 and 5:

     (4)

𝑟𝑟(𝑘𝑘) = 𝐶𝐶𝑒𝑒(𝑘𝑘) + 𝛥𝛥𝐶𝐶𝑥𝑥(𝑘𝑘) + 𝛥𝛥𝐷𝐷𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)  

𝐽𝐽(𝑘𝑘) = ‖𝑟𝑟(𝑘𝑘)‖2,[𝑘𝑘 ,𝑘𝑘+𝑁𝑁]
2 = �𝑟𝑟𝑇𝑇(𝑘𝑘 + 𝑗𝑗)𝑟𝑟(𝑘𝑘 + 𝑗𝑗)

𝑁𝑁

𝑗𝑗=0
 

    (5)

It is evident from Equation 5 that residual is sensitive to fault as well as unknown 
input, control input, and system’s state. For residual evaluation purposes, the l2 norm of 
the residual Equation 5 is used and can be expressed as Equation 6:𝑟𝑟(𝑘𝑘) = 𝐶𝐶𝑒𝑒(𝑘𝑘) + 𝛥𝛥𝐶𝐶𝑥𝑥(𝑘𝑘) + 𝛥𝛥𝐷𝐷𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑑𝑑𝑑𝑑(𝑘𝑘) + 𝐹𝐹𝑓𝑓𝑓𝑓(𝑘𝑘)  

𝐽𝐽(𝑘𝑘) = ‖𝑟𝑟(𝑘𝑘)‖2,[𝑘𝑘 ,𝑘𝑘+𝑁𝑁]
2 = �𝑟𝑟𝑇𝑇(𝑘𝑘 + 𝑗𝑗)𝑟𝑟(𝑘𝑘 + 𝑗𝑗)

𝑁𝑁

𝑗𝑗=0
     (6)

Recall that the l2 norm of a signal evaluates the change in energy of a signal in a certain 
evaluation window (k,k+N). For FD purposes, it is desired to use the energy of the residual 
signal as an evaluation function rather than the residual’s maximum/minimum peak value. 
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Adaptive Threshold-based Fault Detection for Systems

Furthermore, the standard threshold for FD is defined as Equation 7:

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑 ,𝑓𝑓 = 0 ‖𝑟𝑟(𝑘𝑘)‖2
2

     (7)

It is evident from Equation 7 that the threshold represents the maximum value of the 
residual energy under the maximum possible influence of disturbance and model uncertainty 
in fault-free cases, leading the false alarms to zero. On the other hand, residual signals with 
small faults cannot cross the threshold because the fault signal disappears in the residual, 
ultimately increasing the missed detection of the faults.

New variables are defined below for designing a proposed threshold. 

𝛿𝛿𝑑𝑑𝑑𝑑 ≤ 𝛿𝛿𝑑𝑑  and 𝛿𝛿∆𝛥𝛥 ≤ 𝛿𝛿 

where 𝛿𝛿𝑑𝑑𝑑𝑑  and 𝛿𝛿∆𝛥𝛥   represent the influence of certain energy levels of disturbance and model 
uncertainty on the system, respectively. The following threshold is proposed (Equation 8) 
to decrease the missed detection of the faults:

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 ‖𝑟𝑟(𝑘𝑘)‖2
2
     (8)

The threshold in Equation 8 determines the maximum change in energy of the 𝑟𝑟(𝑘𝑘)    
when 𝑟𝑟(𝑘𝑘)   is influenced by disturbance and model uncertainty of a certain energy level, 
i.e.,𝛿𝛿𝑑𝑑𝑑𝑑  and 𝛿𝛿∆𝛥𝛥  , rather than the maximum possible influence, i.e., 𝛿𝛿𝑑𝑑  and 𝛿𝛿 ‖𝑑𝑑(𝑘𝑘)‖2 > 𝛿𝛿𝑑𝑑𝑑𝑑  

∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 
∑𝑇𝑇∑ > 𝛿𝛿∆𝛥𝛥𝛿𝛿 

. Setting the 
threshold according to Equation 8 decreases the missed detection of the faults. On the 
other hand, disturbance 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 ‖𝑑𝑑(𝑘𝑘)‖2 > 𝛿𝛿𝑑𝑑𝑑𝑑  
∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 
∑𝑇𝑇∑ > 𝛿𝛿∆𝛥𝛥𝛿𝛿 

 and model uncertainty 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 ‖𝑑𝑑(𝑘𝑘)‖2 > 𝛿𝛿𝑑𝑑𝑑𝑑  
∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 
∑𝑇𝑇∑ > 𝛿𝛿∆𝛥𝛥𝛿𝛿 

 in which 

𝛿𝛿𝑑𝑑  and 𝛿𝛿 ‖𝑑𝑑(𝑘𝑘)‖2 > 𝛿𝛿𝑑𝑑𝑑𝑑  
∆𝐴𝐴,∆𝐵𝐵,∆𝐶𝐶,∆𝐷𝐷 
∑𝑇𝑇∑ > 𝛿𝛿∆𝛥𝛥𝛿𝛿  force the residual 𝑟𝑟(𝑘𝑘)   to cross the Jth in Equation 8 in fault-free cases lead to 
an increase in false alarms. Thus, there is a need to develop a method of threshold design 
for FD in the uncertain system in Equation 1 that can establish a suitable trade-off between 
missed detection of faults and false alarms. Following Equation 8, the proposed threshold 
in a fault-free case can be written as Equations 9 and 10:

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)𝑢𝑢(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧)‖2   (9) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)𝑢𝑢(𝑧𝑧)‖2 + ‖𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧)‖2) 

 (9)𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)𝑢𝑢(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧)‖2   (9) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)𝑢𝑢(𝑧𝑧)‖2 + ‖𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧)‖2)  (10)

where 𝐺𝐺𝑟𝑟𝑢𝑢  and 𝐺𝐺𝑟𝑟𝑑𝑑  represent the transfer function matrices from 𝑢𝑢 and 𝑑𝑑 to 𝑟𝑟 

𝐺𝐺𝑟𝑟𝑢𝑢 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷) + 𝛥𝛥𝐷𝐷 

𝐺𝐺𝑟𝑟𝑑𝑑 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝐸𝐸𝑑𝑑 − 𝐿𝐿𝐹𝐹𝑑𝑑) + 𝐹𝐹𝑑𝑑  
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Lemma 1: Let ,𝐵𝐵: S1 → S2 
S1, S2 ∈ (0,∞] 

‖𝐴𝐴𝐵𝐵‖2 ≤ ‖𝐴𝐴‖∞‖𝐵𝐵‖2 
𝐽𝐽𝑡𝑡ℎ =

sup
∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)‖∞‖𝑢𝑢(𝑧𝑧)‖2 + ‖𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)‖∞‖𝑑𝑑(𝑧𝑧)‖2) (11) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 (𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑‖𝑑𝑑(𝑧𝑧)‖2)               (12) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑 )     

     (13) 

 are two systems with appropriate dimensions and 
,𝐵𝐵: S1 → S2 

S1, S2 ∈ (0,∞] 
‖𝐴𝐴𝐵𝐵‖2 ≤ ‖𝐴𝐴‖∞‖𝐵𝐵‖2 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)‖∞‖𝑢𝑢(𝑧𝑧)‖2 + ‖𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)‖∞‖𝑑𝑑(𝑧𝑧)‖2) (11) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 (𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑‖𝑑𝑑(𝑧𝑧)‖2)               (12) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑 )     

     (13) 

 
then 

,𝐵𝐵: S1 → S2 
S1, S2 ∈ (0,∞] 

‖𝐴𝐴𝐵𝐵‖2 ≤ ‖𝐴𝐴‖∞‖𝐵𝐵‖2 
𝐽𝐽𝑡𝑡ℎ =

sup
∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)‖∞‖𝑢𝑢(𝑧𝑧)‖2 + ‖𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)‖∞‖𝑑𝑑(𝑧𝑧)‖2) (11) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 (𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑‖𝑑𝑑(𝑧𝑧)‖2)               (12) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑 )     

     (13) 

Applying Lemma 1 on Equation 10 leads to Equations 11, 12, and 13:
,𝐵𝐵: S1 → S2 

S1, S2 ∈ (0,∞] 
‖𝐴𝐴𝐵𝐵‖2 ≤ ‖𝐴𝐴‖∞‖𝐵𝐵‖2 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(‖𝐺𝐺𝑟𝑟𝑢𝑢 (𝑧𝑧)‖∞‖𝑢𝑢(𝑧𝑧)‖2 + ‖𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)‖∞‖𝑑𝑑(𝑧𝑧)‖2) (11) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 (𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑‖𝑑𝑑(𝑧𝑧)‖2)               (12) 

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑 )     

     (13) 

 (11)

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 (𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑‖𝑑𝑑(𝑧𝑧)‖2)  (12)

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0(𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑧𝑧)‖2 + 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑 )   (13)

𝛿𝛿𝑑𝑑𝑑𝑑  and 𝛿𝛿∆𝛥𝛥   is the certain energy level of unknown disturbance, which is assumed to be known.  
‖𝑢𝑢‖2 

𝛾𝛾𝑢𝑢  and 𝛾𝛾𝑑𝑑  

 is the l2 norm of the control input, generally known in practical systems. The control 
input varies during the system operation, eventually changing the FD threshold. Such 
a threshold is an adaptive threshold, which depends on the real values of system input. 
Thus, the aim here is to find the unknown parameters of the threshold in Equation 8, i.e., ‖𝑢𝑢‖2 
𝛾𝛾𝑢𝑢  and 𝛾𝛾𝑑𝑑  .

METHOD TO FIND THE UNKNOWN PARAMETERS

A frequency domain representation of the residual in Equation 5 is written as Equation 14:
A frequency domain representation of the residual in Equation 5 is written as Equation 14: 

𝑟𝑟(𝑧𝑧) = 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑓𝑓 (𝑧𝑧)𝑓𝑓(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧)      

  (14) 

where 𝐺𝐺𝑟𝑟𝑢𝑢� ,𝐺𝐺𝑟𝑟𝑑𝑑 , and 𝐺𝐺𝑟𝑟𝑓𝑓  represent the transfer function matrices from 𝑢𝑢� ,𝑑𝑑, and 𝑓𝑓 to 𝑟𝑟 

𝐺𝐺𝑟𝑟𝑢𝑢� = �𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1[(𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶) (𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷)] + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷]� 

𝐺𝐺𝑟𝑟𝑑𝑑 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝐸𝐸𝑑𝑑 − 𝐿𝐿𝐹𝐹𝑑𝑑) + 𝐹𝐹𝑑𝑑  

𝐺𝐺𝑟𝑟𝑓𝑓 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1�𝐸𝐸𝑓𝑓 − 𝐿𝐿𝐹𝐹𝑓𝑓� + 𝐹𝐹𝑓𝑓  

and 𝑢𝑢�(𝑧𝑧) = �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

    (14)

where 

A frequency domain representation of the residual in Equation 5 is written as Equation 14: 

𝑟𝑟(𝑧𝑧) = 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑓𝑓 (𝑧𝑧)𝑓𝑓(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧)      

  (14) 

where 𝐺𝐺𝑟𝑟𝑢𝑢� ,𝐺𝐺𝑟𝑟𝑑𝑑 , and 𝐺𝐺𝑟𝑟𝑓𝑓  represent the transfer function matrices from 𝑢𝑢� ,𝑑𝑑, and 𝑓𝑓 to 𝑟𝑟 

𝐺𝐺𝑟𝑟𝑢𝑢� = �𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1[(𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶) (𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷)] + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷]� 

𝐺𝐺𝑟𝑟𝑑𝑑 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝐸𝐸𝑑𝑑 − 𝐿𝐿𝐹𝐹𝑑𝑑) + 𝐹𝐹𝑑𝑑  

𝐺𝐺𝑟𝑟𝑓𝑓 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1�𝐸𝐸𝑓𝑓 − 𝐿𝐿𝐹𝐹𝑓𝑓� + 𝐹𝐹𝑓𝑓  

and 𝑢𝑢�(𝑧𝑧) = �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

 represent the transfer function matrices from 

A frequency domain representation of the residual in Equation 5 is written as Equation 14: 

𝑟𝑟(𝑧𝑧) = 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑓𝑓 (𝑧𝑧)𝑓𝑓(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧)      

  (14) 

where 𝐺𝐺𝑟𝑟𝑢𝑢� ,𝐺𝐺𝑟𝑟𝑑𝑑 , and 𝐺𝐺𝑟𝑟𝑓𝑓  represent the transfer function matrices from 𝑢𝑢� ,𝑑𝑑, and 𝑓𝑓 to 𝑟𝑟 

𝐺𝐺𝑟𝑟𝑢𝑢� = �𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1[(𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶) (𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷)] + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷]� 

𝐺𝐺𝑟𝑟𝑑𝑑 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝐸𝐸𝑑𝑑 − 𝐿𝐿𝐹𝐹𝑑𝑑) + 𝐹𝐹𝑑𝑑  

𝐺𝐺𝑟𝑟𝑓𝑓 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1�𝐸𝐸𝑓𝑓 − 𝐿𝐿𝐹𝐹𝑓𝑓� + 𝐹𝐹𝑓𝑓  

and 𝑢𝑢�(𝑧𝑧) = �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

A frequency domain representation of the residual in Equation 5 is written as Equation 14: 

𝑟𝑟(𝑧𝑧) = 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑓𝑓 (𝑧𝑧)𝑓𝑓(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧)      

  (14) 

where 𝐺𝐺𝑟𝑟𝑢𝑢� ,𝐺𝐺𝑟𝑟𝑑𝑑 , and 𝐺𝐺𝑟𝑟𝑓𝑓  represent the transfer function matrices from 𝑢𝑢� ,𝑑𝑑, and 𝑓𝑓 to 𝑟𝑟 

𝐺𝐺𝑟𝑟𝑢𝑢� = �𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1[(𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶) (𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷)] + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷]� 

𝐺𝐺𝑟𝑟𝑑𝑑 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝐸𝐸𝑑𝑑 − 𝐿𝐿𝐹𝐹𝑑𝑑) + 𝐹𝐹𝑑𝑑  

𝐺𝐺𝑟𝑟𝑓𝑓 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1�𝐸𝐸𝑓𝑓 − 𝐿𝐿𝐹𝐹𝑓𝑓� + 𝐹𝐹𝑓𝑓  

and 𝑢𝑢�(𝑧𝑧) = �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

and 

A frequency domain representation of the residual in Equation 5 is written as Equation 14: 

𝑟𝑟(𝑧𝑧) = 𝐺𝐺𝑟𝑟𝑑𝑑 (𝑧𝑧)𝑑𝑑(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑓𝑓 (𝑧𝑧)𝑓𝑓(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧)      

  (14) 

where 𝐺𝐺𝑟𝑟𝑢𝑢� ,𝐺𝐺𝑟𝑟𝑑𝑑 , and 𝐺𝐺𝑟𝑟𝑓𝑓  represent the transfer function matrices from 𝑢𝑢� ,𝑑𝑑, and 𝑓𝑓 to 𝑟𝑟 

𝐺𝐺𝑟𝑟𝑢𝑢� = �𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1[(𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶) (𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷)] + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷]� 

𝐺𝐺𝑟𝑟𝑑𝑑 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1(𝐸𝐸𝑑𝑑 − 𝐿𝐿𝐹𝐹𝑑𝑑) + 𝐹𝐹𝑑𝑑  

𝐺𝐺𝑟𝑟𝑓𝑓 = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1�𝐸𝐸𝑓𝑓 − 𝐿𝐿𝐹𝐹𝑓𝑓� + 𝐹𝐹𝑓𝑓  

and 𝑢𝑢�(𝑧𝑧) = �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

In Equation 14, 𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧) 
[𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶 𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷] �𝑥𝑥(𝑧𝑧)

𝑢𝑢(𝑧𝑧)� + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

(𝐻𝐻1 − 𝐿𝐿𝐻𝐻2)∑[𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� + 𝐻𝐻2∑[𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)

𝑢𝑢(𝑧𝑧)�    

     (16) 

 contains uncertain system matrices. Therefore, it is 
separately treated as written in Equations 15 and 16: 

𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧) 
[𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶 𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷] �𝑥𝑥(𝑧𝑧)

𝑢𝑢(𝑧𝑧)� + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� 

(𝐻𝐻1 − 𝐿𝐿𝐻𝐻2)∑[𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� + 𝐻𝐻2∑[𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)

𝑢𝑢(𝑧𝑧)�    

     (16) 

   (15)
𝐺𝐺𝑟𝑟𝑢𝑢�(𝑧𝑧)𝑢𝑢�(𝑧𝑧) 

[𝛥𝛥𝐴𝐴 − 𝐿𝐿𝛥𝛥𝐶𝐶 𝛥𝛥𝐵𝐵 − 𝐿𝐿𝛥𝛥𝐷𝐷] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� + [𝛥𝛥𝐶𝐶 𝛥𝛥𝐷𝐷] �𝑥𝑥(𝑧𝑧)

𝑢𝑢(𝑧𝑧)� 

(𝐻𝐻1 − 𝐿𝐿𝐻𝐻2)∑[𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� + 𝐻𝐻2∑[𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)

𝑢𝑢(𝑧𝑧)�    

     (16) 

   (16)

From Equation 16, defining a new variable as in Equation 17:   



3113Pertanika J. Sci. & Technol. 31 (6): 3107 - 3124 (2023)

Adaptive Threshold-based Fault Detection for Systems

𝐵𝐵𝑎𝑎 = [𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� = 𝐺𝐺1𝑥𝑥(𝑧𝑧) + 𝐺𝐺2𝑢𝑢(𝑧𝑧)      (17)

where 𝑥𝑥(𝑧𝑧) = (𝑧𝑧𝛿𝛿 − 𝐴𝐴 − 𝛥𝛥𝐴𝐴)−1[𝐵𝐵 + 𝛥𝛥𝐵𝐵 𝐸𝐸𝑑𝑑 ] �𝑢𝑢(𝑧𝑧)
𝑑𝑑(𝑧𝑧)�. 𝑥𝑥(𝑧𝑧)  is the dynamic response of 

𝐵𝐵𝑎𝑎 = [𝐺𝐺1 𝐺𝐺2] �𝑥𝑥(𝑧𝑧)
𝑢𝑢(𝑧𝑧)� = 𝐺𝐺1𝑥𝑥(𝑧𝑧) + 𝐺𝐺2𝑢𝑢(𝑧𝑧)  subject to unknown disturbance d and known control input u. Hence, Equation 17 

becomes Equation 18:

𝐵𝐵𝑎𝑎 = 𝐺𝐺1(𝑧𝑧𝛿𝛿 − 𝐴𝐴 − 𝛥𝛥𝐴𝐴)−1(𝐵𝐵 + 𝛥𝛥𝐵𝐵 𝐸𝐸𝑑𝑑) + (𝐺𝐺2 0) �𝑢𝑢(𝑧𝑧)
𝑑𝑑(𝑧𝑧)�          (18)    (18)

By using Equation 18, Equation 16 can be written as Equation 19:

(𝐻𝐻1 − 𝐿𝐿𝐻𝐻2)∑𝐵𝐵𝑎𝑎 + 𝐻𝐻2∑𝐵𝐵𝑎𝑎       

        (19) 

       (19)

By incorporating Equation 19 into Equation 14, it can be expanded to Equations 20, 21, 
22, and 23:

(20)

(21)

(22)

(20)

(21)

(22)

   (20) (20)

(21)

(22)

(20)

(21)

(22)

     (21)

(20)

(21)

(22)

(20)

(21)

(22)

    (22)

(20)

(21)

(22)

(20)

(21)

(22)
         (23)

where

𝑢𝑢�(𝑧𝑧) = �
∑𝐵𝐵𝑎𝑎
𝑑𝑑(𝑧𝑧)�, 𝐸𝐸

�𝑢𝑢� = (𝐻𝐻1 𝐸𝐸𝑑𝑑) and 𝐹𝐹�𝑢𝑢� = (𝐻𝐻2 𝐹𝐹𝑑𝑑) 

Finally, the expression for the residual signal is written as Equation 24:

𝑟𝑟(𝑧𝑧) = 𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����(𝑧𝑧)𝑢𝑢�(𝑧𝑧) + 𝐺𝐺𝑟𝑟𝑓𝑓 (𝑧𝑧)𝑓𝑓(𝑧𝑧)        (24)

By using the residual signal in Equation 24, the proposed threshold in Equation 8 in a 
fault-free case can be expressed as Equation 25:

𝐽𝐽𝑡𝑡ℎ =
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����(𝑧𝑧)𝑢𝑢�(𝑧𝑧)‖2    (25)
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Applying Lemma 1, Equation 25 turns to Equations 26, 27 and 28:

𝐽𝐽𝑡𝑡ℎ = ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����(𝑧𝑧)‖∞
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0‖𝑢𝑢�(𝑧𝑧)‖2      (26) 

𝐽𝐽𝑡𝑡ℎ = ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0 �
∑𝐵𝐵𝑎𝑎
𝑑𝑑(𝑧𝑧)�2

   (27)

𝐽𝐽𝑡𝑡ℎ = ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞
sup

∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿, ‖𝑑𝑑(𝑘𝑘)‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,𝑓𝑓 = 0‖∑‖2.‖𝐵𝐵𝑎𝑎‖2 + +‖𝑑𝑑(𝑧𝑧)‖2  (28)

Assuming the bounds on 𝑑𝑑, ∑, i.e.,‖𝑑𝑑‖2 ≤ 𝛿𝛿𝑑𝑑𝑑𝑑 ,∑𝑇𝑇∑ ≤ 𝛿𝛿∆𝛥𝛥𝛿𝛿,  the threshold turns to 
Equation 29:

𝐽𝐽𝑡𝑡ℎ = ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞(𝛿𝛿∆𝛥𝛥)‖𝐵𝐵𝑎𝑎‖2 +  𝛿𝛿𝑑𝑑𝑑𝑑        (29)

By carefully observing Equation 18, it is clear that Ba is the output of the system driven 
by the inputs u and d, and it can be described as Equation 30:  

𝐺𝐺𝐵𝐵𝑎𝑎 = 𝐺𝐺1(𝑧𝑧𝛿𝛿 − 𝐴𝐴 − 𝛥𝛥𝐴𝐴)−1(𝐵𝐵 + 𝛥𝛥𝐵𝐵 𝐸𝐸𝑑𝑑) + (𝐺𝐺2 0)     (30)

Using Lemma 1, it is reasonable to write Equation 31:

‖𝐵𝐵𝑎𝑎‖2 ≤ �𝐺𝐺𝐵𝐵𝑎𝑎�∞ . (𝛿𝛿𝑑𝑑𝑑𝑑 + ‖𝑢𝑢‖2)       (31)

Hence, Equation 29 turns to Equation 32:

𝐽𝐽𝑡𝑡ℎ = ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞(𝛿𝛿∆𝛥𝛥)[�𝐺𝐺𝐵𝐵𝑎𝑎�∞(𝛿𝛿𝑑𝑑𝑑𝑑 + ‖𝑢𝑢‖2)] + 𝛿𝛿𝑑𝑑𝑑𝑑      (32)

In Equation 32, all the parameters of the proposed threshold are known except the 
H-infinity norm of 𝐺𝐺𝐵𝐵𝑎𝑎 and 𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑���� . Theorem 1 presents a method to determine the H-infinity 
norm of 𝐺𝐺𝐵𝐵𝑎𝑎  . Due to space constraints, the proof is omitted here but can be obtained by 
solving a bounded real lemma (Boyd et al., 1994).

Theorem 1: For discrete-time linear uncertain system (Equation 33):

𝑥𝑥(𝑘𝑘 + 1) = �̿�𝐴𝑥𝑥(𝑘𝑘) + 𝐵𝐵�𝑢𝑢𝑑𝑑(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = 𝐶𝐶̿ 𝑥𝑥(𝑘𝑘) +  𝐷𝐷� 𝑢𝑢𝑑𝑑(𝑘𝑘)       (33)

where �̿�𝐴 = (𝐴𝐴 + 𝛥𝛥𝐴𝐴), 𝐵𝐵� = [𝐵𝐵 + 𝛥𝛥𝐵𝐵 𝐸𝐸𝑑𝑑 ],  𝐶𝐶̿ = 𝐺𝐺1 

𝐷𝐷� = [𝐺𝐺2 0], ∆𝐴𝐴 = 𝐻𝐻1∑𝐺𝐺1, ∆𝐵𝐵 = 𝐻𝐻1∑𝐺𝐺2 

𝐵𝐵� = [𝐵𝐵 𝐸𝐸𝑑𝑑 ], and ∑𝑇𝑇∑ ≤ 𝛿𝛿𝛿𝛿  
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Given 𝛾𝛾 >  0 , if there exists a scalar 𝜀𝜀 > 0 
𝑃𝑃 > 0 

 and positive definite matrix 
𝜀𝜀 > 0 
𝑃𝑃 > 0  such that 

the following LMI in Equation 34 holds, then the system in Equation 33 is asymptotically 
stable, and the 𝐻𝐻∞  norm of transfer function 𝐺𝐺𝑦𝑦𝑢𝑢𝑑𝑑  satisfies �𝐺𝐺𝑦𝑦𝑢𝑢𝑑𝑑 �∞ < 𝛾𝛾 .

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝜀𝜀𝛿𝛿 0 0 𝐻𝐻1

𝑇𝑇 0 0
∗ −𝑃𝑃 0 𝐴𝐴𝑇𝑇𝑃𝑃 𝐶𝐶̿𝑇𝑇 𝐺𝐺1

𝑇𝑇𝜀𝜀
∗ ∗ −𝛾𝛾2𝛿𝛿 𝐵𝐵�𝑇𝑇𝑃𝑃 𝐷𝐷�𝑇𝑇 𝐺𝐺2

𝑇𝑇𝜀𝜀
∗ ∗ ∗ −𝑃𝑃 0 0
∗ ∗ ∗ ∗ −𝛿𝛿 ∗
∗ ∗ ∗ ∗ ∗ −𝜀𝜀𝛿𝛿 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

< 0       (34)

Using Theorem 1, seeking a minimum value of γ satisfies the following Equation 35 

�𝐺𝐺𝐵𝐵𝑎𝑎�∞ < 𝛾𝛾 ⟺ ‖𝐺𝐺1(𝑧𝑧𝛿𝛿 − 𝐴𝐴 − 𝛥𝛥𝐴𝐴)−1(𝐵𝐵 + 𝛥𝛥𝐵𝐵 𝐸𝐸𝑑𝑑) + (𝐺𝐺2 0)‖∞ < 𝛾𝛾   (35)

Hence, Equation 32 becomes Equation 36:  

𝐽𝐽𝑡𝑡ℎ = ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞(𝛿𝛿∆𝛥𝛥) [ 𝛾𝛾. (𝛿𝛿𝑑𝑑𝑑𝑑 + ‖𝑢𝑢(𝑧𝑧)‖2)] + 𝛿𝛿𝑑𝑑𝑑𝑑       (36)

To this end, the only unknown is ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞   to compute the proposed threshold. The 
following lemma provides the solution of‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����‖∞  .

Lemma 2 (Ding, 2013): Given an LTI system, 𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����(𝑧𝑧) = 𝐶𝐶(𝑧𝑧𝛿𝛿 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)−1𝐸𝐸�𝑢𝑢� + 𝐹𝐹�𝑢𝑢� , 
and for given �̅�𝛾𝑑𝑑 > 0  if there exists a symmetric matrix P such that the following LMI 
Equation 37 holds then ‖𝐺𝐺𝑟𝑟𝑢𝑢𝑑𝑑����(𝑧𝑧)‖∞ < �̅�𝛾𝑑𝑑   

⎣
⎢
⎢
⎡−𝑃𝑃 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐶𝐶) 𝑃𝑃𝐸𝐸�𝑢𝑢� 0
∗ −𝑃𝑃 0 𝐶𝐶𝑇𝑇

∗ ∗ −�̅�𝛾𝑑𝑑𝛿𝛿 𝐹𝐹�𝑢𝑢�
𝑇𝑇

∗ ∗ ∗ −�̅�𝛾𝑑𝑑𝛿𝛿⎦
⎥
⎥
⎤

< 0,   𝑃𝑃 > 0     (37)

Solving LMI Equation 37 in MATLAB and minimum �̅�𝛾𝑑𝑑   can be found at which a 
feasible solution of LMI Equation 37 is obtained. Finally, we are able to write the final 
expression of the adaptive threshold in Equation 36 as Equation 38:

 𝐽𝐽𝑡𝑡ℎ = �̅�𝛾𝑑𝑑 . (𝛿𝛿∆𝛥𝛥 𝛾𝛾 (𝛿𝛿𝑑𝑑𝑑𝑑 + ‖𝑢𝑢(𝑧𝑧)‖2) + 𝛿𝛿𝑑𝑑𝑑𝑑 )       (38)

Rearranging Equation 37 gives Equation 39:

𝐽𝐽𝑡𝑡ℎ = �̅�𝛾𝑑𝑑𝛿𝛿∆𝛥𝛥 𝛾𝛾 𝛿𝛿𝑑𝑑𝑑𝑑 + �̅�𝛾𝑑𝑑𝛿𝛿∆𝛥𝛥 𝛾𝛾 ‖𝑢𝑢(𝑧𝑧)‖2 + �̅�𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑           (39)

Denoting,  𝛾𝛾𝑢𝑢 = �̅�𝛾𝑑𝑑𝛿𝛿∆𝛥𝛥𝛾𝛾 and 𝛾𝛾𝑑𝑑 =  �̅�𝛾𝑑𝑑(1 + 𝛿𝛿∆𝛥𝛥𝛾𝛾) 

By correlating Equations 13 and 39, unknown adaptive threshold parameters can be 
obtained. It is worth remembering that robust threshold design Equation 39 depends on 
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the system parameters and control input. Furthermore, FD is independent of the residual 
generator design. A fault can be successfully detected when an evaluated residual using 
Equation 6 crosses the threshold of Equation 39.

Algorithm for Computation of Adaptive Threshold
Step 1: Define the matrices according to Equations 16 and 24 
Step 2: Find the minimum value of 𝛾𝛾 

𝛿𝛿𝑑𝑑𝑑𝑑  
𝛿𝛿∆𝛥𝛥  
�̅�𝛾𝑑𝑑  

‖𝑢𝑢(𝑘𝑘)‖2 

 using Theorem 1 for the given value of 
𝛾𝛾 
𝛿𝛿𝑑𝑑𝑑𝑑  
𝛿𝛿∆𝛥𝛥  
�̅�𝛾𝑑𝑑  

‖𝑢𝑢(𝑘𝑘)‖2 

 and 

𝛾𝛾 
𝛿𝛿𝑑𝑑𝑑𝑑  
𝛿𝛿∆𝛥𝛥  
�̅�𝛾𝑑𝑑  

‖𝑢𝑢(𝑘𝑘)‖2 
Step 3: Find the minimum value of 

𝛾𝛾 
𝛿𝛿𝑑𝑑𝑑𝑑  
𝛿𝛿∆𝛥𝛥  
�̅�𝛾𝑑𝑑  

‖𝑢𝑢(𝑘𝑘)‖2 

 using Lemma 2
Step 4: Compute the residual evaluation function using Equation 6
Step 5: Calculate the online value of 

𝛾𝛾 
𝛿𝛿𝑑𝑑𝑑𝑑  
𝛿𝛿∆𝛥𝛥  
�̅�𝛾𝑑𝑑  

‖𝑢𝑢(𝑘𝑘)‖2 
Step 6: Set Jth according to Equation 38
Step 7: Compare the evaluated residual, J(k), in Equation 6 with the threshold, Jth, in 
Equation 38 such that J(k) ≤ Jth is fault-free and vice versa.

SIMULATION RESULTS

The performance of the FD system based on the proposed threshold is examined through 
simulations. Two system models are tested: (1) A DC motor system and (2) A three-tank 
benchmark system. For simulation purposes, two types of faults are considered: (1) Abrupt 
fault and (2) Intermittent fault. Since the system’s behavior changes dramatically and 
could potentially harm its stability, abrupt faults seem severe for the system. The sensors 
and actuators of the system also frequently experience intermittent faults that degrade the 
system’s performance. These faults are introduced to show how well the proposed method 
can identify critical faults.

Application to a DC Motor System

A linear discrete-time model of a DC motor with nominal system matrices is shown below:

𝐴𝐴 = � 0.2592 0.0017
−0.0033 0.0025�,  𝐸𝐸𝑓𝑓 = 𝐵𝐵 = �0.0148

0.9974� 

𝐸𝐸𝑑𝑑 = �−1.6460
0.0148 �,  𝐶𝐶 = [1 0],  𝐹𝐹𝑑𝑑 = 𝐹𝐹𝑓𝑓 = 1 

𝜔𝜔𝑚𝑚  and 𝑖𝑖𝑎𝑎   are the state variables, defined as angular velocity and armature current of the 
DC motor, respectively. Model uncertainty is represented as:

𝐻𝐻1 =diag[0.1 0.1], 𝐻𝐻2 = [0.1 0] 

𝐺𝐺1 =diag[0.1 0.1], 𝐺𝐺2 = [0 0.1]𝑇𝑇 

For simulations, the unknown parameter (Σ =  diag[0.9597,0.9597])  of the 
norm-bounded model, uncertainty, is chosen randomly. Load torque variation is treated 
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as an unknown input to the DC motor 
that holds the bounded condition, i.e., 
𝑑𝑑(𝑘𝑘) ∈ [−0.01,0.01] 

𝐴𝐴 + ∆𝐴𝐴 
∆𝐴𝐴 

. Furthermore, matrix 𝑑𝑑(𝑘𝑘) ∈ [−0.01,0.01] 
𝐴𝐴 + ∆𝐴𝐴 
∆𝐴𝐴 

 is stable if 

𝑑𝑑(𝑘𝑘) ∈ [−0.01,0.01] 
𝐴𝐴 + ∆𝐴𝐴 
∆𝐴𝐴  holds the condition 

in Equation 2. Sensor fault is considered 
in this simulation that occurs in the speed 
sensor of the DC motor. 

Control input u(k) (Figure 1) is 
applied to the DC motor for simulation. 
As stated previously, the algorithm to find 
the unknown parameters of the adaptive 
threshold is implemented in MATLAB. 

B y  r e f e r r i n g  t o  E q u a t i o n  3 8 , 
i . e . ,  𝐽𝐽𝑡𝑡ℎ = 𝛾𝛾𝑢𝑢‖𝑢𝑢(𝑘𝑘)‖2 + 𝛾𝛾𝑑𝑑𝛿𝛿𝑑𝑑𝑑𝑑   w h e r e 
𝛾𝛾𝑢𝑢 = �̅�𝛾𝑑𝑑𝛿𝛿∆𝛥𝛥𝛾𝛾   a n d  𝛾𝛾𝑑𝑑 = �̅�𝛾𝑑𝑑(1 + 𝛿𝛿∆𝛥𝛥𝛾𝛾) ,  

Figure 1. Control input to DC motor

𝛿𝛿𝑑𝑑𝑑𝑑 = 0.005  and 𝛿𝛿∆𝛥𝛥 =  0.5155  is taken for threshold computation. ‖𝑢𝑢(𝑘𝑘)‖2  is the  
l2 norm of the control input, known during the system’s operation. The only unknown 
parameters in 𝐽𝐽𝑡𝑡ℎ  are 𝛾𝛾 and �̅�𝛾𝑑𝑑  , which can be determined easily by solving Equations 34 
and 36 using the MATLAB LMI toolbox. After several iterations, 𝐽𝐽𝑡𝑡ℎ  are 𝛾𝛾 and �̅�𝛾𝑑𝑑   are reduced to 
0.4029 and 1.9135, respectively. For a residual generation, observer structure Equation 3 
is used, and filter gain L, using Lemma 2, is calculated as:

𝐿𝐿 = �−0.2592
0.0016 � 

Figure 2 represents the abrupt speed sensor fault detection using the proposed and 
standard thresholds. At t = 2 seconds, the speed sensor experiences an abrupt fault. An 
abrupt fault of extremely small magnitude is simulated as a step function of 0.1 amplitude. 
It can be observed that the evaluation function is below the detection threshold in the case 
of a fault-free sensor with a certain amount of false alarms, but the residual evaluation 
function crosses the adaptive threshold at the time of fault occurrence, which shows the 
explicit demonstration of the FD in the sensor. The evaluated residual is also compared 
with the state-of-the-art threshold Equation 7, stated in the literature for the same type 
of speed sensor fault. It is evident from Figure 2 that if a threshold using Equation 7 is 
selected, there are missed detections of the faults. Missed detection of the faults causes the 
FD system’s performance to decrease, ultimately leading to monitored system failure. The 
effectiveness of the proposed threshold can be observed in Figure 2. It becomes obvious 
that the effect of a fault is considerably increased using the proposed threshold Equation 
38 with negligible false alarms, which delivers fast detection of the fault. Faults cannot be 
detected accurately using a standard threshold, irrespective of zero false alarms.
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Figure 2. Abrupt sensor FD: proposed threshold (top), standard threshold (bottom)

Figure 3. Simulated intermittent sensor fault (top) and fault detection (bottom)
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In Figure 3, an intermittent sensor fault, which shows the improper functioning of the 
sensor, is simulated for FD. Figure 3 demonstrates that the evaluated residual is above 
the threshold for the time of fault occurrence. Both types of sensor faults are successfully 
detected using the adaptive threshold technique. Thus, these findings support the efficacy 
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of the proposed approach by accurately and quickly identifying the sensor fault in the DC 
motor regardless of unknown disturbances and model uncertainty in the system state matrix 
as well as in the input and measurement matrices.

Application to a Three-tank System 

As seen in Figure 4, the three-tank system 
is a benchmark system that has been 
extensively studied in chemical engineering. 
It is employed in real-time software and 
practical applications to implement various 
control and FD techniques. The three-
tank system’s dynamics are nonlinear. 
Linearizing the nonlinear model introduces 
modeling errors that are considered norm-

Figure 4. Three-tank system (Ding, 2013)

bound model uncertainty. It makes it a useful benchmark for FD algorithm testing.
The following equations express the nonlinear dynamics of the three-tank system and 

are represented in Equation 40: 

𝐴𝐴ℎ̇1 = 𝑄𝑄1 − 𝑄𝑄13 

𝐴𝐴ℎ̇2 = 𝑄𝑄2 + 𝑄𝑄32 − 𝑄𝑄20                  (40) 

𝐴𝐴ℎ̇3 = 𝑄𝑄13 − 𝑄𝑄32 

        (40)

with

𝑄𝑄13 = 𝑎𝑎1𝛥𝛥13𝛥𝛥𝑠𝑠𝑛𝑛(ℎ1 − ℎ3)�2𝑠𝑠|ℎ1 − ℎ3| 

𝑄𝑄32 = 𝑎𝑎3𝛥𝛥23𝛥𝛥𝑠𝑠𝑛𝑛(ℎ3 − ℎ2)�2𝑠𝑠|ℎ3 − ℎ2| 

𝑄𝑄20 = 𝑎𝑎2𝛥𝛥0�2𝑠𝑠ℎ2  

Water levels h1, h2 and h3 in respective tanks are the process outputs y(k), while mass 
flows Q1, Q2 are taken as the process inputs u1(k), u2(k). The mass flow from the ith tank to 
the jth tank is represented by Qij. The cross-sectional areas of the pipe linking tank 1-tank 
3 and tank 2-tank 3 are represented by S13 and S23, respectively. S0 is the cross-sectional 
area of the tank 2 outlet pipe. The signum function, abbreviated as sgn, is described as:

sgn(𝑥𝑥) = �
−1
0
1

𝑖𝑖𝑓𝑓𝑥𝑥 < 0
𝑖𝑖𝑓𝑓𝑥𝑥 = 0
𝑖𝑖𝑓𝑓𝑥𝑥 > 0

 

𝛥𝛥13 = 𝛥𝛥23 = 𝛥𝛥0 =  𝛥𝛥𝑛𝑛  

Pump 2Pump 1
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Table 1 lists the system’s coefficients and relevant parameters. The disturbance in the 
three-tank system is caused by the water bubbles produced as a result of the pumps’ water 
released into the tanks. There is also measurement noise in the sensors that determines the 
water levels. The system’s linear model is developed for FD by expanding Taylor’s series 
around the equilibrium or operating point using the linearization approach. A discrete-
time linear model, expressed in the state-space form (1), is obtained by performing the 
linearization at the operating points h1 = 45 cm, h2 = 15 cm h3 and = 30 cm, and discretizing 
the linearized model at a sampling time of 1 second. Nominal matrices are defined as:

𝐴𝐴 = �
0.9915 0 0.0084

0 0.9807 0.0082
0.0084 0.0082 0.9833

�, 𝐶𝐶 = diag[1,1,1] 

𝐵𝐵 = �
0.0065 0.0008
0.0008 0.0065

0 0
�, 𝐸𝐸𝑑𝑑 = �

0.25 0 0
0 0.25 0
0 0 0.25

� 

𝐷𝐷 = 0, 𝐸𝐸𝑓𝑓 = 𝐵𝐵, 𝐹𝐹𝑑𝑑 = 𝐹𝐹𝑓𝑓 = 𝐶𝐶 

The modeling errors brought in by the linearization process, defined below, represent 
the model uncertainty in the system matrices.

𝐻𝐻1 = 𝐻𝐻2 = �
−0.01 0 0

0 −0.01 0
0 0 −0.01

� 

𝐺𝐺1 =  �
0.01 0 0.015

0 0.01 0.015
0.01 0.01 0.05

� 

The same procedure simulates the model, with a constant inflow of pumps Q1 = 100 
cm3/sec, Q2 = 100 cm3/sec, uniform disturbance, 𝑑𝑑(𝑘𝑘) ∈ [−0.01,0.01]. 𝑙𝑙2 

𝛿𝛿𝑑𝑑𝑑𝑑 = 0.005 and 𝛿𝛿∆𝛥𝛥 =  0.5155 

 norm of the 

Table 1
Parameters of the three-tank system

Parameters Symbol Value Unit
Cross-section area of the tank A 154 cm2

Cross-section area of the pipe Sn 0.5 cm2 

Maximum height of the tank Hmax 62 cm
Maximum flow rate of pump 1 Q1max 100 cm3/sec
Maximum flow rate of pump 2 Q2max 100 cm3/sec 
Coefficient of flow for pipe 1 a2 0.46
Coefficient of flow of pipe 2 a2 0.60
Coefficient of flow for pipe 3 a3 0.45
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control input is determined online. 
𝑑𝑑(𝑘𝑘) ∈ [−0.01,0.01]. 𝑙𝑙2 

𝛿𝛿𝑑𝑑𝑑𝑑 = 0.005 and 𝛿𝛿∆𝛥𝛥 =  0.5155  are the energy levels of 
disturbance and model uncertainty, respectively. MATLAB LMI toolbox is used to compute 
the unknown parameters, γ and �̅�𝛾𝑑𝑑   , in Jth by solving Equations 34 and 36, respectively. 
After several iterations, γ and �̅�𝛾𝑑𝑑   are reduced to 0.023 and 1.006, respectively.

For a residual generation, observer gain L is calculated using Lemma 2 as:

𝐿𝐿 = �
0.2461 0 0
∗ 0.2461 0
∗ ∗ 0.2461

� 

One of the three sensors’ offset faults is taken into account during the simulation. The 
offset value ranges from 0 to Hmax . In this regard, at t = 80 seconds, a 2 cm offset sensor 
fault is introduced into the sensor of tank 3.

It can be shown from Figure 5 that fault detectability using the proposed threshold 
is significantly improved as compared to a standard threshold. However, there are false 
alarms in the system that are in an acceptable range and do not affect the FD system’s 
performance. Similar results are obtained for the sensor intermittent fault in tank 1 and 
abrupt actuator fault in pump 1 in Figures 6 and 7, respectively. It can be noticed from 
the simulation results of both benchmark systems that fault detection is quite easier using 
the proposed threshold. The reason is the improved fault detectability of the proposed 
threshold.
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Figure 5. Abrupt sensor FD in tank 3: proposed threshold (top), standard threshold (bottom)
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CONCLUSION

An adaptive threshold-based fault detection system has been designed for linear systems 
subjected to norm-bounded model uncertainty and a deterministic disturbance signal. The 
computation of unknown threshold parameters is formulated as an 𝐻𝐻∞   optimization. The 
main contribution of this paper is the design of an adaptive threshold and its integration 
into a fault detection system, such that fault detectability is improved. Due to the integrated 

Figure 7. Abrupt actuator FD in pump 1: proposed threshold (top), standard threshold (bottom)
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Figure 6. Intermittent sensor FD in tank 1: proposed threshold (top), standard threshold (bottom)
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design, a separate design for the robust residual generator is not required. It is shown that 
the proposed threshold is a linear function of unknown disturbances and known control 
inputs that are available for online computation. The performance of the proposed approach 
is verified by simulations of two well-known applications for different kinds of faults. 
Results show that all faults were successfully detected.
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